Abstract

Isolated large-spin Heisenberg antiferromagnetic uniform chain is quite rare. Here, we have successfully synthesized an ideal one-dimensional (1D) S = 5/2 linear-chain antiferromagnet [C2NH8]3[Fe(SO4)3], which crystallizes in a trigonal lattice with the space group R3c. A broad maximum at Tmax = 18 K is observed in the magnetic susceptibility curve. Notably, no long-range magnetic ordering is observed down to 2 K even if the material has a large Curie-Weiss temperature of θCW = -25.5 K. High-field magnetization at 2 K shows a linear increase until saturation at 30 T, and a high-field electron spin resonance (ESR) reveals the absence of a zero-field spin gap. The intrachain interaction J and interchain interaction J' are determined. Quite a small ratio of J'/J < 2.5 × 10-3 suggests that [C2NH8]3[Fe(SO4)3] behaves as an ideal 1D uniform linear-chain antiferromagnet, in which the magnetic ordering is prevented by the extremely small interchain interaction and quantum fluctuation even for a classical spin of S = 5/2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.