Abstract

We have prepared single crystal face centered cubic (fcc) magnetic transition metal films (Co,Ni,Fe) on (001) diamonds, the thickness of the films varying between a few tenths of a nanometer to over 100 nm. The crystalline quality and fourfold symmetry of these layers was monitored in situ during the film growth with RHEED and a chemical analysis was performed using Auger spectroscopy. In addition, the structure of the samples was investigated ex situ using X-ray diffraction and EXAFS, demonstrating the single crystal, fcc (001) structure throughout each entire film. The magnetic characterization was performed with Ferromagnetic Resonance (FMR) and Superconducting Quantum Interference Device (SQUID) hysteresis loops. The saturation magnetization of the Co films is only slightly lower than the literature values. The coercive fields are very small (∼25 Oe) and the magnetization reversal very sharp. The FMR yielded a fourfold anisotropy comparable to literature values. The observation of the first standing spinwaves underlines the good quality. The Ni films are tetragonally distorted due to the 1.2% mismatch. The FMR data indicate a significant perpendicular anisotropy slightly smaller than 4πM, the fourfold in-plane anisotropy being comparable to the bulk value. The saturation magnetization is reduced by 30% compared to bulk values, probably due to nickel-carbide which was observed in the XRD data from some samples. Neither the in-plane 〈110〉 nor the in-plane 〈100〉 axis show an easy axis behavior and both require fields in excess of 6000 Oe to saturate, the coercive fields being about 200 Oe. The RHEED patterns of the Fe films show single crystal growth with a lattice constant comparable to diamond, indicating an fcc structure. A similar structural and magnetic characterization of these films will also be presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call