Abstract

The magnetic and microstructure properties of Fe2O3–0.4NiO–0.6ZnO–B2O3 glass system, which was subjected to heat treatment in order to induce a magnetic crystalline phase (Ni0.4Zn0.6-Fe2O4 crystals) within the glass matrix, were investigated. DSC measurement was performed to reveal the crystallization temperature of the prepared glass sample. The obtained samples, produced by heat treatment at 765°C for various times (1, 1.5, 2, and 3 h), were characterized by X-ray diffraction, IR spectra, transmission electron microscopy, and vibrating sample magnetometer. The results indicated the formation of spinel Ni–Zn ferrite in the glass matrix. Particles of the ferrite with sizes ranging from 28 to 120 nm depending on the sintering time were observed. The coercivity values for different heat-treatment samples were found to be in the range from 15.2 to 100 Oe. The combination of zinc content and sintering times leads to samples with saturation magnetization ranging from 12.25 to 17.82 emu/g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.