Abstract
The role of magnetoelastic coupling effects in nanocrystalline ferromagnets is investigated by means of high-field magnetization and Doppler-broadening spectrum measurements. For the nanocrystalline Fe73 5Cu1Nb3Si13.5B9 alloy, the results show that the pinning effects resulting from the quasidislocation dipole intensely influence the movement of domain wall; by coupling with the magnetostriction the defects-induced stress fields determine the magnetic properties at the early stage of crystallization. In view of the effective anisotropy and magnetoelastic coupling energy the optimal annealing conditions of alloys are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.