Abstract

Alanine is a transfer standard dosimeter using in gamma-ray and electron beam calibration. One of the important factor affecting its dosimetric response is amount of humidity which can deviate the dosimetry expert from the exact value of absorbed doses. Ab initio molecular dynamics calculations were performed to determine the environmental effects on the EPR parameters of L-α-Alanine radicals in acidic and alkaline solutions. Similar to the closed-shell amino acid molecule alanine, the zwitterionic form of alanine radical is the stable form in the gas phase while the non-zwitterionic neutral alanine radical is not a stable structure. Geometric and EPR parameters of radicals in both gas and solution phases are found to be dependent on hydrogen bonding of water molecules with the polar groups and by dynamic solvation. Calculations on the optimized free radicals in the gas phase revealed that for neutral radical, hydrogen bonding to water molecules drives a decrease in the magnitudes of g-tensor components gxx and gyy without affecting neither gzz component nor the HFCCs. For the transfer from the gas to solution phase of the alanine radical anion is accompanied with an increase in the spin density on the carboxylic group’s oxygen atoms. However, for the neutral radical, this transfer from gas to solution phase is accompanied with the decrease in the spin density on oxygen atoms. Calculated isotropic HFCCs and g-tensor of all radicals were in good agreement with their experimental counterparts in both acidic and alkaline solutions, which enhances the confidence in our calculated results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.