Abstract

A series of Er3(Fe, Co, M)29 (M=Cr, V, Ti, Mn, Ga, Nb) compounds has been synthesized and their structure and magnetic properties have been investigates by means of x-ray diffraction and magnetic measurements. It is found that the Fe-based Er3(Fe,M)29 compounds crystallize in the Th2Ni17-type structure with disordered substitution of the dumbbell Fe-Fe, instead of Nd3(Fe,Ti)29-type structure, so its chemical formula can also be expressed as Er2-n(Fe,M)17+2n (n=0.2). Substitution of M for Fe in the Er3Fe29 compound leads to an increase in the Curie temperature. With the substitution of Co for Fe in the Er3(Fe,M)29 (M=Cr, V) compounds, a new phase was found which crystallizes in monoclinic symmetry. The anisotropy of the Er3Fe19.5Co6V3.5 compound at room temperature is of easy-axis type and a spin reorientation transition from the easy-axis type to the easy-plane type anisotropy occurs when temperature decreases to 162K. A first order magnetization process (FOMP) was observed in the HMD magnetization curve of Er3Fe19.5Co6V3.5 at 5K, the critical field of the FOMP was derived to be 3.8T.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call