Abstract

Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride. We confirm earlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sample regions. We correlate our experimental data with calculations which help explain our observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call