Abstract

Agrin is a key organizer for postsynaptic differentiation at the neuromuscular junction (NMJ). This activity requires the binding of agrin to the synaptic basal lamina via its N-terminal (NtA) domain. It has been suggested that this binding is mediated by conserved amino acids in the gamma 1 chain of laminin. Here, we report the crystal structure of chicken NtA expressed in eukaryotic HEK293 cells. In contrast to the previously published structure [Stetefeld, J., Jenny, M., Schulthess, T., Landwehr, R., Schumacher, B., Frank, S., Ruegg, M.A., Engel, J., Kammerer, R.A., 2001. The laminin-binding domain of agrin is structurally related to N-TIMP-1. Nat. Struct. Biol., 8, 705-709.], which was derived from the NtA domain expressed in E. coli, the new data show that the N-terminal tail region (amino acid residues Asn1-Arg5) is highly structured. Moreover, the disulfide bridge between Cys2 and Cys74 was also present. In addition, we show that the binding of NtA requires the gamma 1 chain of laminin and is not greatly affected by the composition of beta chains. These results confirm a model of the NtA-laminin complex where conserved amino acids in the gamma 1 chain are prerequisite for the binding to agrin and they further emphasize that the source of protein can be critical in structure determination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.