Abstract

We study the structure and kinetic properties of slow-mode shocks near the plasma sheet boundary layer (PSBL) associated with magnetic reconnection by Cluster observation. The presence of slow-mode shocks is confirmed by traditional Rankine–Hugoniot (RH) analysis and Monte-Carlo shock fitting method. The Walén analysis, applied to the tailward flow associated with slow-mode shocks, also supports that plasma was accelerated across a Petschek-type slow-mode shock connected to the diffusion region. Back-streaming ions were observed on the shock layer, and cold ions were accelerated and heated by slow-mode shocks. In addition, whistler and electrostatic solitary waves were observed around the slow-mode shocks. These waves might be excited by the observed field-aligned electron beams near the shocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call