Abstract

Heterogeneous nuclear ribonucleoprotein (hnRNP) D0 has two ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), each of which can bind solely to the UUAG sequence specifically. The structure of the N-terminal RBD (RBD1) determined by NMR is presented here. It folds into a compact αβ structure comprising a four-stranded antiparallel β-sheet packed against two α-helices, which is characteristic of the RNP-type RBDs. Special structural features of RBD1 include N-capping boxes for both α-helices, a β-bulge in the second β-strand, and an additional short antiparallel β-sheet coupled with a β-turn-like structure in a loop. Two hydrogen bonds which restrict the positions of loops were identified. Backbone resonance assignments for RBD1 complexed with r(UUAGGG) revealed that the overall folding is maintained in the complex. The candidate residues involved in the interactions with RNA were identified by chemical shift perturbation analysis. They are located in the central and peripheral regions of the RNA-binding surface composed of the four-stranded β-sheet, loops, and the C-terminal region. It is suggested that non-specific interactions with RNA are performed by the residues in the central region of the RNA-binding surface, while specific interactions are performed by those in the peripheral regions. It was also found that RBD1 has the ability to inhibit the formation of the quadruplex structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call