Abstract

The structures and molecular interactions of established synthetic chalcones were correlated with their release profiles from asolectin liposomes. The effects of chalcones on the properties of liposomes were evaluated by dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-VIS), horizontal attenuated total reflection Fourier transform infrared (HATR-FTIR), 31P nuclear magnetic resonance (31P NMR), zeta (ζ) potential and differential scanning calorimetry (DSC). The profiles and mechanisms of release were accessed according to the Korsmeyer-Peppas model. Results obtained allowed the establishment of a relationship between the chalcone release profile and 1) the ordering effects of chalcones in different membrane regions, 2) their polar or interfacial location in the lipid layer, 3) the influence of hydroxy and methoxy substituents, 4) their effect on reorientation of lipid choline-phosphate regions. The obtained data may improve the development of chalcone-based systems to be used in the therapy of chronic and acute diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.