Abstract

We present the synthesis, characterization, and electrode behavior of LiNi0.5Mn1.5O4 spinels prepared by the wet-chemical method via citrate precursors. The phase evolution was studied as a function of nickel substitution and upon intercalation and deintercalation of Li ions. Characterization methods include X-ray diffraction, SEM, Raman, Fourier transform infrared, superconducting quantum interference device, and electron spin resonance. The crystal chemistry of LiNi0.5Mn1.5O4 appears to be strongly dependent on the growth conditions. Both normal-like cubic spinel [Fd3m space group (SG)] and ordered spinel (P4132 SG) structures have been formed using different synthesis routes. Raman scattering and infrared features indicate that the vibrational mode frequencies and relative intensities of the bands are sensitive to the covalency of the (Ni, Mn)-O bonds. Scanning electron microscopy (SEM) micrographs show that the particle size of the LiNi0.5Mn1.5O4 powders ranges in the submicronic domain with a narrow grain-size distribution. The substitution of the 3d8 metal for Mn in LiNi0.5Mn1.5O4 oxides is beneficial for its charge–discharge cycling performance. For a cut-off voltage of 3.5–4.9 V, the electrochemical capacity of the Li//LiNi0.5Mn1.5O4 cell is ca. 133 mAh/g during the first discharge. Differences and similarities between LiMn2O4 and LiNi0.5Mn1.5O4 oxides are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.