Abstract

Many networked datasets with units interacting in groups of two or more, encoded with hypergraphs, are accompanied by extra information about nodes, such as the role of an individual in a workplace. Here we show how these node attributes can be used to improve our understanding of the structure resulting from higher-order interactions. We consider the problem of community detection in hypergraphs and develop a principled model that combines higher-order interactions and node attributes to better represent the observed interactions and to detect communities more accurately than using either of these types of information alone. The method learns automatically from the input data the extent to which structure and attributes contribute to explain the data, down weighing or discarding attributes if not informative. Our algorithmic implementation is efficient and scales to large hypergraphs and interactions of large numbers of units. We apply our method to a variety of systems, showing strong performance in hyperedge prediction tasks and in selecting community divisions that correlate with attributes when these are informative, but discarding them otherwise. Our approach illustrates the advantage of using informative node attributes when available with higher-order data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.