Abstract

The formation of amylose–lipid complexes, known as resistant starch type Ⅴ (RS5), is limited by the low content of amylose in natural starch, increasing the amylose content is an effective approach to improve the yield of RS5. In this paper, an extrusion-debranching-complexing strategy with two extrusions was proposed to increase the formation of amylose–lipid complexes. A combination of corn starch (CS), pullulanase (60 U/g, w/w), and lauric acid (LA) with different contents of 4 %, 6 % and 8 % (w/w) generated enzymatically debranched extruded corn starch-lauric acid (EECS-LA) complexes after the second extrusion. The EECS-LA complexes were ordered form II complexes, with a significantly improved short-range molecular order. The melting temperature was in the range of 105–145℃. The enthalpy change increased with the increase of LA content and the value was 9.42 J/g for EECS-8 %LA complexes; these complexes could reform after dissociation. Scanning electron microscopy examination of the EECS-LA complexes revealed an irregular lamellar structure. The RS content of EECS-LA complexes increased significantly, achieving a value of 38.34 % for EECS-8 %LA complexes. This extrusion-debranching-complexing strategy is effective for preparing RS5 and could be useful in industry for the continuous production of RS5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call