Abstract

Arbutoid mycorrhizae were synthesized in growth pouches between Arbutus menziesii Pursch. (Pacific madrone) and two broad host range basidiomycete fungi, Pisolithus tinctorius (Pers.) Coker and Couch and Piloderma bicolor (Peck) Julich. P. tinctorius induced the formation of dense, pinnate mycorrhizal root clusters enveloped by a thick fungal mantle. P. bicolor mycorrhizae were usually unbranched, and had a thin or non-existent mantle. Both associations had the well-developed para-epidermal Hartig nets and intracellular penetration of host epidermal cells by hyphae typical of arbutoid interactions. A. menziesii roots developed a suberized exodermis which acted as a barrier to cortical cell penetration by the fungi. Ultrastructurally, the suberin appeared non-lamellar, but this may have been due to the imbedding resin. Histochemical analyses indicated that phenolic substances present in epidermal cells may be an important factor in mycorrhiza establishment. Analyses with X-ray energy dispersive spectroscopy showed that some of the granular inclusions present in fungal hyphae of the mantle and Hartig net were polyphosphate. Other inclusions were either protein or polysaccharides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call