Abstract

SummarySpecific antibodies and enzyme–gold probes were used to study the structure and development of infection threads in nodules induced by Rhizobium leguminosarum on the roots of Vicia, Pisum and Phaseolus. In Pisum nodules, the tubular infection thread wall contains polysaccharides antigenically similar to those of the cell wall, including cellulose, xyloglucan, methyl‐esterified pectin and non‐esterified pectin, but none of these wall components is present around the infection droplet structures from which bacteria are internalized by plant plasma membrane. As reported previously for pea nodules, the luminal matrix of infection threads and infection droplets contains a plant glycoprotein; this glycoprotein is also secreted by infected and uninfected cortical cells of a Vicia root at the earliest stages of nodule initiation. Synthesis of a transcellular infection thread apparently involves reorganized deposition of components normally targeted to the cell wall, and infection thread growth is orientated anticlinally through the outer cortex in the same plane observed for the deposition of new cell walls following mitosis. Both the development of infection threads in the outer cortex and the initiation of cell division in the inner cortex are preceded by a similar process of cell reactivation involving centralization of nuclei and the development of anticlinal transvacuolar strands. It is therefore suggested that the two Rhizobium‐induced processes of infection thread growth and cortical cell division may both be consequences of a similar plant cell response in the inner and outer root cortex, respectively. Phaseolus nodules contained only short intracellular infection structures which terminated within individual cells and contained no luminal matrix material. The differences in infection thread structure between Pisum and Phaseolus nodules may reflect differences in ontogeny between “indeterminate” and “determinate” nodule meristems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call