Abstract

Novel value-added starch-based materials can be produced by forming amylose inclusion complexes (AIC) with hydrophobic compounds. There is currently little research on AIC use as polymeric emulsifiers, particularly for AIC with fatty amine salt ligands. This work evaluated AIC emulsifiers by studying the structure and functionality of AIC composed of high amylose corn starch and fatty amine salts (10–18 carbons, including a mixture simulating vegetable oil composition) produced via steam jet cooking. X-ray scattering verified successful AIC formation, with peaks located near 7.0°, 12.8° and 19.9° 2θ. AIC were easily dispersed in water (80–85 °C) and remained in suspension at room temperature for weeks, unlike the uncomplexed ligands or starch. AIC were highly effective emulsifying agents, with emulsifying activity indexes of 213–229 m2g−1 at pH 5, and zeta potentials, a measure of electrostatic repulsion, as high as 43.4 mV. AIC dispersions had surface tension ranging from 24 to 41 mN/m and displayed surface-active properties superior to amylose complexes formed from fatty acid salts and competitive with common starch-based emulsifiers. These findings demonstrate that fatty amine salt AIC are effective emulsifiers that can be made from low-cost sources of fatty amine salts, such as vegetable oil derivatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call