Abstract
We have isolated and characterized overlapping cDNAs encoding a novel, voltage-gated Ca2+ channel alpha1 subunit, alpha1H, from a human medullary thyroid carcinoma cell line. The alpha1H subunit is structurally similar to previously described alpha1 subunits. Northern blot analysis indicates that alpha1H mRNA is expressed throughout the brain, primarily in the amygdala, caudate nucleus, and putamen, as well as in several nonneuronal tissues, with relatively high levels in the liver, kidney, and heart. Ba2+ currents recorded from human embryonic kidney 293 cells transiently expressing alpha1H activated at relatively hyperpolarized potentials (-50 mV), rapidly inactivated (tau = 17 ms), and slowly deactivated. Similar results were observed in Xenopus oocytes expressing alpha1H. Single-channel measurements in human embryonic kidney 293 cells revealed a single-channel conductance of approximately 9 pS. These channels are blocked by Ni2+ (IC50 = 6.6 microM) and the T-type channel antagonists mibefradil (approximately 50% block at 1 microM) and amiloride (IC50 = 167 microM). Thus, alpha1H-containing channels exhibit biophysical and pharmacological properties characteristic of low voltage-activated, or T-type, Ca2+ channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.