Abstract
Iron acquisition is a complex, multicomponent process critical for most organisms' survival and virulence. Small iron chelating molecules, siderophores, mediate transport as key components of common pathways for iron assimilation in many microorganisms. The chemistry and biology of the extraordinary tight and specific metal binding siderophores is of general interest in terms of host/guest chemistry and is a potential target toward the development of therapeutic treatments for microbial virulence. The siderophore pathway of the moderate thermophile, Thermobifida fusca, is an excellent model system to study the process in Gram-positive bacteria. Here we describe the structure and characterization of the siderophore periplasmic binding protein, FscJ from the fuscachelin gene cluster of T. fusca. The structure shows a di-domain arrangement connected with a long α-helix hinge. Several X-ray structures detail ligand-free conformational changes at different pH values, illustrating complex interdomain flexibility of the siderophore receptors. We demonstrated that FscJ has a unique recognition mechanism and details the binding interaction with ferric-fuscachelin A through ITC and docking analysis. The presented work provides a structural basis for the complex molecular mechanisms of siderophore recognition and transportation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.