Abstract

Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-158–177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-158–177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.

Highlights

  • Human respiratory syncytial virus (RSV), a pneumovirus of the Paramyxoviridae family in the Mononegavirales order, is an important respiratory pathogen and the major cause of bronchiolitis and pneumonia in children [1]

  • The genomic RNA of RSV is maintained as a nuclease-resistant NRNA ribonucleoprotein complex, which acts as a template for the RNA-dependent RNA polymerase complex (RdRp) that is responsible for both replication and transcription of the genome

  • We studied the functional implications of these mutations for transcription and co-localization of full-length M2-1 in cytoplasmic inclusion bodies, where viral transcription likely occurs

Read more

Summary

Introduction

Human respiratory syncytial virus (RSV), a pneumovirus of the Paramyxoviridae family in the Mononegavirales order, is an important respiratory pathogen and the major cause of bronchiolitis and pneumonia in children [1]. The genomic RNA of RSV is maintained as a nuclease-resistant NRNA ribonucleoprotein complex, which acts as a template for the RdRp that is responsible for both replication and transcription of the genome. Whereas the highly processive replicase generates a complete positive-sense RNA, which acts in turn as a template for genomic RNA synthesis, the transcriptase produces ten different subgenomic capped and polyadenylated mRNAs. Transcription proceeds by a sequential stop-and re-start mechanism in which the polymerase responds to cis-acting signals present in intergenic regions [4]. The polymerase has a propensity to dissociate from the N-RNA template, but cannot reinitiate at a downstream gene in case of premature termination [6], which leads to a decreasing transcription gradient from the 39 to the 59 end of the genome

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call