Abstract

BackgroundAccessory cholera enterotoxin (Ace) is a classical enterotoxin produced by Vibrio cholerae, the causative agent for cholera. Considering the crucial role of Ace in pathogenesis of cholera, we explored the modulation of structure/function of Ace using gold nanoparticles (AuNPs) of different size and shape – spherical (AuNS10 and AuNS100, the number indicating the diameter in nm) and rod (AuNR10). MethodsBiophysical techniques have been used to find out structural modulation of Ace by AuNPs. Effect of AuNP on Ace conformation was monitored by far-UV CD; urea-induced unfolding and binding of Ace to various AuNPs were studied by tryptophan fluorescence. In vivo experiments using mouse ileal loop and Ussing chamber were carried out to corroborate biophysical data. ResultsBiophysical data revealed degradation of Ace by AuNR10 and AuNS100, not by AuNS10. The feature of AuNR10 having high aspect ratio, but with the same transverse diameter as that of AuNS10 enabled us to explore the importance of morphology on modulation of protein structure/function. The equilibration time for adsorption shows dependence on the radius of curvature, being largest for AuNR10. In vivo experiments revealed the efficacy of AuNR10 and AuNS100 for reduced fluid accumulation, indicative of the loss of activity of Ace. ConclusionsWe show how biophysical studies and in vivo experiments go hand-in-hand in establishing the efficacy and role of size/shape of AuNPs on a toxin structure. General significanceThe effect of AuNP on toxin depends on its morphology. The targeted modulation of Ace could be of therapeutic benefit for gastrointestinal disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call