Abstract

IlvA1, a pyridoxal phosphate-dependent (PLP) enzyme, catalyzes the deamination of l-threonine and l-serine to yield 2-ketobutyric acid or pyruvate. To gain insights into the function of IlvA1, we determined its crystal structure from Pseudomonas aeruginosa to 2.3 Å. Density for a 2-ketobutyric acid product was identified in the active site and a putative allosteric site. Activity and substrate binding assays confirmed that IlvA1 utilizes l-threonine, l-serine, and L-allo-threonine as substrates. The enzymatic activity is regulated by the end products l-isoleucine and l-valine. Additionally, the efficiency of d-cycloserine and l-cycloserine inhibitors on IlvA1 enzymatic activity was examined. Notably, site-directed mutagenesis confirmed the active site residues and revealed that Gln165 enhances the enzyme activity, emphasizing its role in substrate access. This work provides crucial insights into the structure and mechanism of IlvA1 and serves as a starting point for further functional and mechanistic studies of the threonine deaminase in P. aeruginosa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call