Abstract

The present study examined the kinematic patterns of initial food uptake, food transport, pharyngeal packing and swallowing in the common musk turtle Sternotherus odoratus. These data are supplemented by morphological descriptions of the skull and the hyolingual complex. Although the hyoid is mainly cartilaginous, S. odoratus still use exclusively hydrodynamic mechanisms in prey capture and prey transport. The tongue is relatively small, with weakly developed intrinsic musculature. We propose that the elasticity of the hypoglossum and the hyoid body impacts the capability of S. odoratus to suction feed, but allows these turtles to effectively re-position the food items within the oropharyngeal cavity during transport, manipulation and pharyngeal packing. We standardised conditions in all feeding events by using food items of the same consistence and size, and by always offering the food at the same position at the bottom of the aquarium. Nonetheless, the measured kinematic values varied considerably. The duration of prey capture and prey transport cycles were relatively long in S. odoratus compared to other freshwater turtles studied so far. The initiation of hyoid retraction relative to the onset of jaw opening can be modulated not only in prey capture but also in prey transport cycles. In the common musk turtle, the jaw and hyoid movements apparently have a low level of integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.