Abstract

A novel full-scale prefix oxic coking wastewater (CWW) biological treatment O/H/O system had been operated steadily six years with the effluent quality meeting national discharge standard. Comparing to the traditional CWW biological treatment process, which usually have an anaerobic unit at the start of the process, here the O/H/O system has obvious advantages in COD removal, total nitrogen removal and reduced energy consumption. It is very necessary to illustrate the structure and function of the microbial community involved in different bioreactors of the O/H/O system. High-throughput MiSeq sequencing was used to examine the 16S rRNA genes in this system. Results revealed a contrasting microbial composition among the activated sludge samples of three sequential bioreactors: the β-Proteobacteria related sequences dominated in the O1 activated sludge with the relative abundance of 56.44% while 7.53% of the sequences were assigned to Thiobacillus; Rhodoplanes related sequences dominated in the bioreactor H and O2 activated sludge with relative abundance of 8.86% and 8.92%, respectively. The physico-chemical characteristics of CWW were analyzed by standard methods and the operational parameters were routinely monitored to examine their effects on the microbial communities. The bioinformatics software package of phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) was used to predict the microbial community functional profiling and found three dominant genera of Rhodoplanes, Lysobacter and Leucobacter enriched the xenobiotics biodegradation and metabolism pathway. The diverse and distinct microbial community involved in biological treatment processes of CWW treatment indicating that water characteristics and operational parameters determined the microbial community composition. These results significantly expanded our knowledge of the biodiversity and population dynamics of microorganisms and discerned the relationships between bacterial communities and environmental variables in the biological treatment processes. Moreover, in this study, we proposed a comprehensive biodegradation model of CWW treatment and defined as O/H/O system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call