Abstract
Normal growth and development of the skeleton require the presence of viable, actively contracting skeletal muscle throughout the fetal period. A chick embryo model of midgestation chemical paralysis and secondary muscle atrophy was used to test the hypothesis that functioning muscle stimulates the growth of long bones by influencing the proliferation, differentiation, and hypertrophy of chondrocytes in cartilage of the epiphysis and growth plate. Paralysis did not alter the overall developmental stage of the long bone or the organization of the growth plate. Compared with controls, however, uptake of bromodeoxyuridine in the paralyzed chick was reduced by 27-55% in the chondroepiphysis and uppermost zone of the tibial growth plate, indicating reduced proliferation of chondrocytes. A specific reduction in the size of the proliferative zone and a reduced number of proliferating cells were also observed. By contrast, in the second, post-proliferative zone of the growth plate, the height of the zone was unchanged and its area was only slightly reduced compared with controls. Finally, median hypertrophic cell profile area, a measure of cell size, was not significantly affected by paralysis, although frequency analysis revealed modest numerical reductions in the population of the largest hypertrophic chondrocytes in the paralyzed group. These data suggest that the role of functioning fetal muscle in maintaining proper skeletal growth may be mediated primarily through specific stimulation of the recruitment or proliferation of immature chondrocytes, or of both.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.