Abstract

Carnitine acyltransferases catalyze the exchange of acyl groups between carnitine and coenzyme A (CoA). These enzymes include carnitine acetyltransferase (CrAT), carnitine octanoyltransferase (CrOT), and carnitine palmitoyltransferases (CPTs). CPT-I and CPT-II are crucial for the beta-oxidation of long-chain fatty acids in the mitochondria by enabling their transport across the mitochondrial membrane. The activity of CPT-I is inhibited by malonyl-CoA, a crucial regulatory mechanism for fatty acid oxidation. Mutation or dysregulation of the CPT enzymes has been linked to many serious, even fatal human diseases, and these enzymes are promising targets for the development of therapeutic agents against type 2 diabetes and obesity. We have determined the crystal structures of murine CrAT, alone and in complex with its substrate carnitine or CoA. The structure contains two domains. Surprisingly, these two domains share the same backbone fold, which is also similar to that of chloramphenicol acetyltransferase and dihydrolipoyl transacetylase. The active site is located at the interface between the two domains, in a tunnel that extends through the center of the enzyme. Carnitine and CoA are bound in this tunnel, on opposite sides of the catalytic His343 residue. The structural information provides a molecular basis for understanding the catalysis by carnitine acyltransferases and for designing their inhibitors. In addition, our structural information suggests that the substrate carnitine may assist the catalysis by stabilizing the oxyanion in the reaction intermediate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.