Abstract

One notable feature of linear dsDNA viruses is that, during replication, their lengthy genome is squeezed with remarkable velocity into a preformed procapsid and packed into near crystalline density. A molecular motor using ATP as energy accomplishes this energetically unfavorable motion tack. In bacterial virus phi29, an RNA (pRNA) molecule is a vital component of this motor. This 120-base RNA has many novel and distinctive features. It contains strong secondary structure, is tightly folded, and unusually stable. Upon interaction with ion and proteins, it has a knack to adapt numerous conformations to perform versatile function. It can be easily manipulated to form stable homologous monomers, dimers, trimers and hexamers. As a result, many unknown properties of RNA have been and will be unfolded by the study of this extraordinary molecule. This article reviews the structure and function of this pRNA and focuses on novel methods and unique approaches that lead to the illumination of its structure and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call