Abstract

Atomistic simulations are used to investigate the structure and interfacial free volume of 〈1 1 0〉 symmetric tilt grain boundaries in copper containing the E structural unit from the Σ9(2 2 1) θ = 141.1° grain boundary. In this work, a stereologically-based methodology is used to calculate the grain boundary free volume along with the spacing and connectivity of free volume. After generating the minimum energy equilibrium grain boundary, we examine (i) the grain boundary structure, (ii) a measure of free volume associated with the grain boundary, (iii) spatial correlation functions of the distribution of free volume, and (iv) images of grain boundary free volume distribution. Using the results from these calculations, the influence of free volume spatial distribution and grain boundary structure on dislocation dissociation and nucleation is briefly discussed for boundaries with the E structural unit subjected to tensile loading normal to the interface along with the potential implications of free volume connectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call