Abstract

Betula species have phellems with distinctive features such as stratification into thin paper-like layers, which are easily split in the tangential direction, and linear lenticels. We aimed to clarify the structure and development of the characteristic phellems of B. maximowicziana. In a normal periderm, phellem, phellogen, and phelloderm consist of tangentially elongated cells that are arranged in radial files. The phellem consists of layers of 1.4 ± 0.5 cells thick of very thin-walled phellem cells alternating with layers of 7.1 ± 1.5 thick-walled phellem cells. Seasonal sampling showed that the former and the latter were formed in the early and middle-to-late stages of the growing period, respectively. In lenticels, filling tissues alternated with closing layers. Most cells were collapsed and loosely packed in the filling tissue while all cells were intact and arranged in radial files in the closing layers. The filling tissue cells had unique walls that appeared to be easily deformed. Each annual increment of phellem in Betula is composed of a thin-walled cell layer (early phellem) and a thicker layer of thick-walled cells (late phellem). It is likely that the combination of filling tissue and closing layer in lenticels helps to perform the dual functions of gas exchange and protection, and that the collapse of the cells in filling tissue effectively contributes to gas permeability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.