Abstract

Bud dormancy in temperate perennials ensures the survival of growing meristems under the harsh environmental conditions of autumn and winter, and facilitates an optimal growth and development resumption in the spring. Although the molecular pathways controlling the dormancy process are still unclear, DORMANCY-ASSOCIATED MADS-BOX genes (DAM) have emerged as key regulators of the dormancy cycle in different species. In the present study, we have characterized the orthologs of DAM genes in European plum (Prunus domestica L.). Their expression patterns together with sequence similarities are consistent with a role of PdoDAMs in dormancy maintenance mechanisms in European plum. Furthermore, other genes related to dormancy, flowering, and stress response have been identified in order to obtain a molecular framework of these three different processes taking place within the dormant flower bud in this species. This research provides a set of candidate genes to be genetically modified in future research, in order to better understand dormancy regulation in perennial species.

Highlights

  • Perennial species from temperate regions have to cope with seasonal changes in temperature, photoperiod, and water availability

  • The circle plot revealed strong conservation along the three scaffolds with the PpeDAM region, localized in the chromosome 1 of peach (Figure 2). They presented a weaker synteny with peach chromosomes 6 and 8. In this region of the chromosome 6, we found the putative ortholog in the peach genome of Arabidopsis SHORT VEGETATIVE PHASE (SVP), systematically named Prupe.6G199000, belonging to the SVP/StMADS11 lineage of type II MIKCC MADS-box genes in which DORMANCY-ASSOCIATED MADSBOX genes (DAM) genes are clustered (Jiménez et al, 2009)

  • We studied the expression patterns of SORBITOL-6-PHOSPHATE DEHYDROGENASE (S6PDH)-like and STRESS ASSOCIATED PROTEIN (SAP)-like genes, which are postulated to participate in the stress tolerance response during bud dormancy in peach

Read more

Summary

Introduction

Perennial species from temperate regions have to cope with seasonal changes in temperature, photoperiod, and water availability. Bud dormancy is an important adaptative mechanism ensuring survival during the cold period and paving the way for optimal growth resumption, flowering, and fruit production. During bud dormancy, these species cease growth and activate defense mechanisms, both essential to avoid injuries caused by the harmful environmental conditions during winter (Welling and Palva, 2006; Hänninen and Tanino, 2011). During endodormancy (abbreviated to dormancy in this study), the meristems remain protected within the reproductive and vegetative buds without apparent growth (Cooke et al, 2012) In this phase, flower buds require exposure to a specific range of chilling temperatures for proper flowering and subsequent fruiting. Chilling fulfilment does not cause an immediate resumption of growth because exposure to higher

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.