Abstract
We present laboratory experiments for tidal starting jet vortices forming at idealized barotropic inlets using dye visualization and particle image velocimetry (PIV) of the surface velocity field. Vortices are identified in the PIV data using the local swirl strength, and metrics are calculated for each identified vortex, including position, equivalent circular diameter, maximum vorticity, circulation, and upwelling potential. These quantitative metrics are presented for four different inlet layouts, including narrow and wide barrier islands and short and long jetties. In each case, starting jet eddies initially form attached to the inlet mouth, with a rapid increase in vorticity, circulation, and size as water exiting the inlet flows directly into the starting jet dipole. Once the vortices reach a critical size, they are entrained into the tidal jet and detach from the inlet. As they advect away from the inlet, their size remains steady while the maximum vorticity and circulation gradually decrease because of the effect of bottom friction and the reduction of input to the vortices from the tidal flow as a result of their advection within the tidal jet. Secondary vortices shed from the inlet during the quasi‐steady tidal jet are also entrained into the starting jet vortices, decreasing the overall rate at which their vorticity and circulation decay downstream of the inlet. The quantitative results indicate that the starting jet eddies grow, detach from the inlet mouth, and decay at predictable non‐dimensional rates and times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.