Abstract

Abstract Mechanisms responsible for meso- and convective-scale organization within a large tropical squall line that occurred on 22 February 1993 during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment are investigated using a three-dimensional numerical cloud model. The squall line occurred in an environment typical of fast-moving tropical squall lines, characterized by moderate convective available potential energy and moderate-to-strong vertical shear beneath a low-level jet with weak reverse vertical shear above. A well-simulated aspect of the observed squall line is the evolution of a portion of its leading convective zone from a quasi-linear to a three-dimensional bow-shaped structure over a 2-h period. This transition is accompanied by the development of both a prominent mesoscale vortex along the northern edge of the 40–60-km long bow-shaped feature and elongated bands of weaker reflectivity situated rearward and oriented transverse to the leading edge, within enha...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call