Abstract
We apply RISM (reference interaction site model) and PRISM (polymer-RISM) theories to calculate the site–site pair structure and the osmotic equation of state of suspensions of circular or hexagonal platelets (lamellar colloids) over a range of ratios of the particle diameter over thickness Dσ. Despite the neglect of edge effects, the simpler PRISM theory yields results in good agreement with the more elaborate RISM calculations, provided the correct form factor, characterizing the intramolecular structure of the platelets, is used. The RISM equation of state is sensitive to the number n of sites used to model the platelets, but saturates when the hard spheres, associated with the interaction sites, nearly touch; the limiting equation of state agrees reasonably well with available simulation data for all densities up to the isotropic–nematic transition. When properly scaled with the second virial coefficient, the equations of state of platelets with different aspect ratios Dσ nearly collapse on a single master curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.