Abstract

We report first-principles calculations for a ferroelectric organic crystal of phenazine and chloranilic acid molecules. Weak intermolecular interactions are properly treated by using a second version of the van der Waals density functional known as vdW-DF2 [K. Lee et al., Phys. Rev. B 82, 081101 (2010)]. Lattice constants, total energies, spontaneous electric polarizations, phonon modes and frequencies, and the energy barrier of proton transfer are calculated and compared with PBE and experiments whenever possible. We show that the donation of one proton from a chloranilic acid molecule to a neighboring phenazine molecule is energetically favorable. This proton transfer is the key structural change that breaks the centrosymmetry and leads to the ferroelectric structure. However, there is no unstable phonon associated with the proton transfer, and an energy barrier of 8 meV is found between the paraelectric and ferroelectric states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.