Abstract

The structure and the electronic properties of thin (1 molecular layer) and thick (20 molecular layers) Zn-tetra-phenyl-porphyrin (ZnTPP) films grown on a single metal oxide (MO) layer, namely Fe(001)-p(1×1)O, are shown and discussed. During the first stages of deposition, the ultra-thin MO layer reduces the molecule-substrate interaction enhancing the molecular diffusivity with the respect to other investigated substrates [namely, Si(111), Au(001) and oxygen-free Fe(001)]. On Fe(001)-p(1×1)O, ZnTPP molecules form an ordered and stable square-lattice array. The photoemission analysis of the valence bands reveals that all the characteristic features of the molecule are already visible in the 1 monolayer-thick sample spectrum. Similarly, the core level investigation suggests a weak molecule perturbation. The ZnTPP/Fe(001)-p(1×1)O interface represents a prototypical system to investigate the organic film adhesion on ultra-thin MO layers and the processes involved during the film growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.