Abstract

Cobalt spinel oxides, which consist of tetrahedral site (AO4) and octahedral site (BO6), are a potential group of transition metal oxides (TMO) for electrocatalytic nitrate reduction reactions to ammonia (NRA). Identifying the true active site in spinel oxides is crucial to designing advanced catalysts. This work reveals that the CoO6 site is the dominant site for NRA through the site substitution strategy. The suitable electronic configuration of Co at the octahedral site leads to a stronger interaction between the Co d-orbital and the O p-orbital in O-containing intermediates, resulting in a high-efficiency nitrate-to-ammonia reduction. Furthermore, the substitution of metallic elements at the AO4 site can affect the charge density at the BO6 site via the structure of A-O-B. Thereafter, Ni and Cu are introduced to replace the tetrahedral site in spinel oxides and optimize the electronic structure of CoO6. As a result, NiCo2O4 exhibits the best activity for NRA with an outstanding yield of NH3 (15.49mgcm-2h-1) and FE (99.89%). This study introduces a novel paradigm for identifying the active site and proposes an approach for constructing high-efficiency electrocatalysts for NRA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call