Abstract

The structure and electrochemical characteristics of (La1−xDyx)0.8Mg0.2Ni3.4Al0.1 (x = 0–0.20) hydrogen storage alloys have been investigated. Dysprosium was adopted as a partial substitution element for lanthanum in order to improve electrochemical properties. The XRD, SEM and EDX results showed that the alloys were composed of (La, Mg)2Ni7, LaNi5 and (La, Mg)Ni2 phases. The introduction of Dy promoted the formation of (La, Mg)2Ni7 phase which possesses high hydrogen storage capacity, and controlling dysprosium content at 0.05 can obtain the maximum (La, Mg)2Ni7 phase abundance in the alloys. The maximum discharge capacity was heightened from 382.5 to 390.2 mAh/g, which was ascribed to (La, Mg)2Ni7 phase abundance increasing from 54.8% to a maximum (60.5%). Also, the biggest discharge capacity retention remained 82.7% after 100 cycles at discharge current density of 300 mA/g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.