Abstract
AbstractBiFe1−xZnxO3 (x = 0, 0.5, 1, 1.5, 2 mol%) (BFZO) films were prepared on ITO/glass substrates by a sol‐gel method. The effects of different Zn contents on the structures and electrical properties of the BFZO films were investigated. From X‐ray diffraction (XRD), microstructure and X‐ray spectroscopy (XPS) results, the BFZO films with a Zn content of 1 mol% showed a better crystal structure and grain development, and the Fe2+ and oxygen vacancy concentrations in this sample were the lowest among all the evaluated BFZO films. The P‐E hysteresis loop indicated that the BFZO films with 1 mol% Zn had the highest remanent polarization (2Pr), which was 82.4 μC/cm2, along with a coercive field (2Ec) of 887 kV/cm at the tested electric field of 857 kV/cm. The BFZO film with 1 mol% Zn had the lowest leakage current density, which was 3.54 × 10−7 A/cm2 at the tested electric field of 200 kV/cm. Both at high and low electric fields, the space charge‐limited current (SCLC) conduction mechanism was the main leakage mechanism. When the test frequency was 105 Hz, the dielectric constant was 133, and the dissipation factor was 0.015.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Ceramic Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.