Abstract
Lead-free piezoelectric ceramics (1 − x − y)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3–yBiCoO3 (x = 0.12–0.24, y = 0–0.04) have been fabricated by a conventional solid-state reaction method, and their structure and electrical properties have been investigated. The XRD analysis shows that samples with y ≤ 0.03 exhibit a pure perovskite phase and very weak impurity reflections can be detected in the sample with y = 0.04. With x increasing from 0.12 to 0.24 and y increasing from 0 to 0.04, the ceramics transform gradually from a rhombohedral phase to a tetragonal phase and rhombohedral–tetragonal phase coexistence to a pseudocubic phase, respectively. The morphotropic phase boundary (MPB) of the system between rhombohedral and tetragonal locates in the range of x = 0.18–0.21, y = 0–0.03. The ceramics near the composition of the MPB have good performances with piezoelectric constant d33 = 156 pC/N and electromechanical coupling factor kp = 0.34 at x = 0.21 and y = 0.01, which attains a maximum value in this ternary system. Adding content of BiCoO3 leads to a disappearance of the response in the curves of dielectric constant-temperature to the ferroelectric–antiferroelectric transition. The temperature dependence of dielectric properties suggests that the ceramics are relaxor ferroelectrics. The results show that (1 − x − y)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3–yBiCoO3 ceramics are good candidate for use as lead-free ceramics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.