Abstract

The spectroscopy and dynamics of water/methanol (MeOH) mixtures at hydroxylated silica surfaces is investigated from atomistic simulations. The particular focus is on how the structural dynamics of MeOH changes when comparing surface-bound and MeOH in the bulk. From analyzing the frequency frequency correlation functions it is found that the dynamics on the picosecond time scale differs by almost a factor of two. While the relaxation time is 2.0 ps for MeOH in the bulk solvent it is considerably slowed-down to 3.5 ps for surface-bound MeOH. Surface-adsorbed MeOH molecules reside there for several nanoseconds and their H-bonds are strongly oriented towards the surface-OH groups. These results are of particular relevance for chromatographic systems where the solvent may play a central role in their function. The present simulations suggest that surface-sensitive spectroscopic techniques should be useful in better characterizing such heterogeneous systems and provide detailed insight into solvent dynamics and structure relevant in chromatographic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.