Abstract
This paper reports Monte Carlo simulation results of a polymer melt of short, non-entangled chains which are embedded between two impenetrable walls. The melt is simulated by the bond-fluctuation lattice model under athermal conditions, i.e. only excluded volume interactions between the monomers and between the monomers and the walls are taken into account. In the simulations, the wall separation is varied from about one to about 15 times the bulk radius of gyration Rg. The confinement influences both static and dynamic properties of the films: Chains close to the walls preferentially orient parallel to it. This parallel orientation decays with increasing distances from the wall and vanishes for distances larger than about 2Rg. Strong confinement effects are therefore observed for film thicknesses D≲4Rg. The preferential alignment of the chains with respect to the walls suppresses reorientations in perpendicular direction, whereas parallel reorientations take place in an environment of high monomer density. Therefore, they have a relaxation time larger than that of the bulk. On the other hand, the influence of confinement on the translation motion of the chains parallel to the walls is very weak. It almost coincides with the bulk behavior even if D≈1.5Rg. Despite these differences between translational and reorientational dynamics, their behavior can be well reproduced by a variant of Rouse theory which only assumes orthogonality of the Rouse modes and determines the necessary input from the simulation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.