Abstract
Studies of supercooled liquid phase‐change materials are important for the development of phase‐change memory and neuromorphic computing devices. Herein, a machine‐learning (ML)‐based interatomic potential for Ge2Sb2Te5 (GST) to conduct large‐scale molecular dynamics simulations of liquid and supercooled liquid GST is used. A pronounced effect of the thermostat parameters on the simulation results is demonstrated, and it is shown how using a Langevin thermostat with optimized damping values can lead to excellent agreement with reference ab initio molecular dynamics (AIMD) simulations. Structural and dynamical analyses are presented, including the studies of radial and angular distributions, homopolar bonds, and the temperature‐dependent diffusivity. Herein, the usefulness of ML‐driven molecular dynamics for further studies of supercooled liquid GST, with length and timescales far exceeding those that are accessible to AIMD is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: physica status solidi (RRL) – Rapid Research Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.