Abstract

Combining experimental results obtained with X-ray scattering and field-gradient nuclear magnetic resonance (NMR) and an assessment of new and previous dielectric and rheology data, our study focuses on the molecular weight (Mw) evolution of local structure and dynamics in a homologous series of covalently bonded ionic liquids. Performed on a family of electrolytes with a tailored degree of ionic decoupling, this study reveals the differences between monomeric and oligomeric melts with respect to their structural organization, mass and charge transport, and molecular diffusion. Our study demonstrates that for the monomeric compound, the broadband conductivity and mechanical spectra reflect the same underlying distribution of activation barriers and that the Random Barrier Model describes fairly well both the ionic and structural relaxation processes in these materials. Moreover, the oligomers with chains comprising ten segments only exhibit both structural and dynamical fingerprints of a genuine polymer. A comparison of conductivity levels estimated using the self-diffusion coefficients probed via NMR and those probed directly with dielectric spectroscopy reveals the emerging of ion correlations which are affecting the macroscopic charge transport in these materials in a chain-length dependent manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.