Abstract
Receptive fields (RFs) in the visual cortex are characterized by spatiotemporal profiles that have been described in detail for area 17 simple cells. In this study, we analyse spatial and temporal RF properties of simple and complex cells in layer II/III of area 18 of the anaesthetized adult cat, using the reverse correlation method with brief 50 ms presentations of flashing bright and dark bars. Stimuli were presented with preferred orientation as previously determined by moving bars. Simple cell RFs were characterized by spatially and temporally separable ON and OFF subfields, while in complex cells ON and OFF subfields were superimposed. To discriminate possible contributions of GABAergic inhibition to RF structure and response dynamics in area 18, we have used three-barrelled micropipettes for single cell recordings and microiontophoresis, and have documented ON and OFF responses before, during and after application of bicuculline methiodide for blockade of GABAA receptors. During blockade of GABAergic inhibition, the stimulus-induced and resting discharge frequency increased, and in about 50% of the cells both ON and OFF subfields changed significantly in space and/or time in a reversible manner. In space, blockade of inhibition widened RF subfields, whereas in time, it shortened the duration of the excitatory cell response in simple and complex cells. ON and OFF subfields separated in space and time (simple cells), or time (complex cells) became less isolated or even superimposed. The results indicate substantial local inhibitory processing contributing to spatiotemporal RF properties in layers II/III of area 18 of the cat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The European journal of neuroscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.