Abstract
Molecular dynamics simulations have been used to study mixtures of acetone/methanol, acetonitrile/methanol, and acetone/acetonitrile over their entire composition range. Using the effective pair potentials of the neat liquids, the simulations reproduce much of the experimental spectra presented in the previous paper [D. S. Venables, A. Chiu, and C. A. Schmuttenmaer, J. Chem. Phys. 113, 3243 (2000)]. In addition to the total dipole spectra, autocorrelation functions and their corresponding spectra were calculated for the single dipole moment as well as the translational and rotational velocities of each component in the mixtures. Radial and spatial distribution functions, hydrogen bonding, and methanol chain formation in the mixtures were also analyzed. The red-shift of the high frequency librational band is attributed to methanol chains breaking up into shorter segments, and to hydrogen bonding between methanol and co-solvent molecules. Methanol molecules have a strong tendency to reside in chains, even at low methanol concentrations, and hydrogen bonding is the primary determinant of structure in the mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.