Abstract

The conformational space of methacrylamide was explored by quantum mechanical modeling and surveyed in the 59.6–104.0 GHz frequency range using a millimeter-wave Stark-modulated free-jet absorption spectrometer. According to the relative orientation of the two unsaturated bonds, two conformers were observed, namely s-trans (A=5234.360(1), B=3364.9717(8) and C=2173.099(1) MHz) and s-cis (A=5207.292(1), B=3470.930(1) and C=2113.496(1) MHz). The s-trans conformation is the global minimum, with relative energy 4(2) kJ mol−1 and calculated isomerization barrier 15 kJ mol−1. Except for the methyl hydrogen atoms, s-cis-methacrylamide is planar and its methyl internal rotation barrier is 10.2(1) kJ mol−1. In s-trans-methacrylamide the allyl and amino frames form a dihedral angle of about 30° and the methyl internal rotation barrier is 7.4 kJ mol−1. This different behaviour is explained in terms of attractive and repulsive intramolecular interactions between groups: CH2/CO and CH3/NH2 for s-cis, CH2/NH2 and CH3/CO for s-trans. The tunneling splitting related to the double-well potential describing the interconversion between the two equivalent s-trans forms is 837.97(2) MHz and was reproduced by a one-dimensional flexible model using a 3.6 kJ mol−1 interconversion barrier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.