Abstract

We perform molecular dynamics simulations on a set of ionomer melts in the presence of a static, external electric field. We employ the same coarse-grained bead–spring model from our previous simulations, which characterized the zero-field morphologies and dynamics of the isolated or percolated ionic aggregates observed in these systems. Here we investigate the electric field effects on these aggregates. In the linear response regime, the morphology of both isolated and percolated aggregates is unaltered because the force between the two ions at contact is much stronger than the force on an ion due to the external field. However, the same fields are strong enough to bias the local ion dynamics so that ions in the percolated systems, which contain a continuous ionic network, transition to the steady state drift regime. Furthermore, the field biases the motion of oppositely charged ions in opposite directions and decorrelates the ionic aggregates along the field direction. In the systems with isolated ionic...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.