Abstract

Despite the crucial role of ATP in life and artificial life-like applications, fundamental aspects relevant to its function, such as its conformational properties and its interaction with water and ions, remain unclear. Here, by integrating linear and two-dimensional infrared spectroscopy with ab initio molecular dynamics, we provide a detailed characterization of the vibrational spectra of the phosphate groups in ATP and in its complex with Zn2+ in water. Our study highlights the role of conformational disorder and solvation dynamics, beyond the harmonic normal-mode analysis, and reveals a complex scenario in which electronic and environmental effects tune the coupling between phosphate vibrations. We identify βγ-bidentate and αβγ-tridentate modes as the preferential coordination modes of Zn2+, as was proposed in the literature for Mg2+, although this conclusion is reached by a different spectral interpretation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.