Abstract

Herein, we report a comparative modelling study of 1,2-dimethoxyethane (DME) and 1,2-dimethoxypropane (DMP) at 298 K and 318 K in the liquid state, water mixtures, and at infinite dilution condition in water, methanol, carbon tetrachloride, and n-heptane. Both DME and DMP are united-atom models compatible with GROMOS∕OPLS force fields. Calculated thermodynamic and structural properties of the pure DME and DMP liquids resulted in excellent agreement with the experimental data. In aqueous solutions, densities, diffusion coefficients, and concentration dependent conformers of DME, were in agreement with experimental data. The calculated free energy of solvation (ΔG(hyd)) at 298 K is equal to -22.1 ± 0.8 kJ mol(-1) in good agreement with the experimental value of 20.2 kJ mol(-1). In addition, the free energy of solvation of DME in non-aqueous solvents follows the trend methanol ≈ water < carbon tetrachloride < n-heptane, consistently with the dielectric constant of the solvents. On contrary, the presence of an extra methyl group on chiral carbon makes DMP less soluble than DME in water (ΔG(hyd) = -16.0 ± 1.1 kJ mol(-1)) but more soluble in non-polar solvents as n-heptane. Finally, for the DMP the chiral discrimination of the two enantiomers was calculated as solvation free energy difference of one DMP isomer in the solution of the other. The obtained value of ΔΔG(RS) = -3.7 ± 1.4 kJ mol(-1) indicates a net chiral discrimination of the two enantiomers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.