Abstract

The liquid state structure of the ionic liquid, 1-ethyl-3-methylimidazolium acetate ([C(2)mim][OAc]), an excellent nonderivitizing solvent for cellulosic biomass, has been investigated at 323 K by molecular dynamics (MD) simulation and by neutron diffraction using the SANDALS diffractometer at ISIS to provide experimental differential neutron scattering cross sections from H/D isotopically substituted materials. Ion-ion radial distribution functions both calculated from MD and derived from the empirical potential structure refinement (EPSR) model to the experimental data show the alternating shell structure of anions around the cation, as anticipated. Spatial probability distributions reveal the main anion-to-cation features as in-plane interactions of anions with the three imidazolium ring hydrogens and cation-cation planar stacking above/below the imidazolium rings. Interestingly, the presence of the polarized hydrogen-bond acceptor (HBA) anion (acetate) leads to an increase in anion-anion tail-tail structuring within each anion shell, an indicator of the onset of hydrophobic regions within the anion regions of the liquid. MD simulations show the importance of scaling of the effective ionic charges in the basic simulation approach to accurately reproduce both the observed experimental neutron scattering cross sections and ion self-diffusion coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.